Statisticko-empirická metoda výpočtu výsledné hodnoty poklesu a zdvihu podrubaných a nadrubaných překopů a chodeb v uhelných dolech
Ing. Josef Požár
soudní znalec z oboru hlubinná těžba černého uhlí, specializace geomechanika
Pokles a zdvih, někdy také svislá složka pohybu důlních děl, v tomto případě překopů a chodeb je po konvergenci druhým nejvýznamnějším často měřeným geomechanickým parametrem. Pro rychlý a snadný výpočet výsledné hodnoty poklesu nebo zdvihu především překopů při dobývání jejich ochranných pilířů byla vypracována jednoduchá statisticko-empirická metoda. Může se především uplatit u překopů s kolejovou dopravou a případně také při odvádění odpadních důlních vod. Další význam může mít při rozborech a upřesnění napěťo-deformačních procesů v horském masivu, které jsou vyvolány dobývacími pracemi. Metodu lze využít při nadloží pravidelně zavalujícím o úklonu vrstev od 0o do 15o vyjímečně 30o především v podmínkách ostravsko-karvinského revíru. Důležité ale přitom bude, aby pokles a zdvih byl měřen metodicky správným způsobem, jak je uváděno v následující části.
Způsob měření poklesu a zdvihu důlních děl
Na obr. 1 je schématicky znázorněn stav překopu před a po podrubání. Je třeba si uvědomit k jakým změnám zde dochází, které mohou ovlivnit kvalitu výsledků měření konvergence a poklesu. Z obrázku je zřejmé, že po podrubání dojde nejen k poklesu překopu ale také k bubření počvy, rozvolnění stropu a k vtlačování ocelové obloukové výztuže do volných prostor nad výztuží ve stropě. Pokud měříme svislou konvergenci na výztuži můžeme dokonce naměřit divergenci. To pochopitelně vede k mylným závěrům, jak to dokazují výsledky měření na svornících ukotvených v hornině, kde naměříme konvergenci. Pokles (nebo zdvih) překopu měřený na ocelové výztuži je obdobně jako u svislé konvergence zkreslen deformací ocelové výztuže. Pokud se měří pokles (nebo zdvih) a svornících ve stropu nebo počvě skládá se ze dvou pohybů, a to pohybů v překopu a pohybu horninového masivu. Tyto dva pohyby se vzájemně sčítají nebo odčítají, případně také ruší. Například dochází-li při podrubání k poklesu celého překopu a současně v opačném směru k bubření počvy v překopu a tyto pohyby mají stejnou velikost, zjistí se výškovým měřením, že překop nepoklesl. Takto naměřené hodnotu poklesu vytváří nepravidelnou, zubatou křivku, která závisí na pevnosti hornin v počvě, jak to uvádí obr. 2 z měření poklesu překopu 0499 v Dole Paskov/1,2,3/. Její tvar byl dokonce zdůvodňován vzájemným posuvem horninových vrstev při poklesu překopu. Obdobná situace nastane při měření poklesu na svornících ukotvených ve stropě, které jsou zkresleny rozvolněním hornin ve stropě překopu. Skutečné hodnoty poklesu (nebo zdvihu) lze stanovit výškovým měřením na svornících ukotvených v bocích překopu. Tato místa nejsou totiž ovlivněna svislou konvergencí, jak to prokazuje plynulá poklesová křivka na obr. 2. Další možný způsob stanovení skutečného poklesu překopu je ten, že sice měříme pokles bodů na počvě, ale naměřené hodnoty opravujeme o konvergenci spodní části profilu překopu nebo-li o bubření počvy. Pouze takovéto hodnoty poklesů a zdvihů překopů a chodeb je pak možno použít pro další rozbory při poznávání zákonitostí vlivu dobývání na důlní díla, obdobně tak tomu také bylo při sestavování uváděné statisticko-empirické metody.
Podstata metody
Jedná se o metodu vytvořenou v dřívějším období/4/. Vzhledem k její jednoduchosti a nenáročnosti při výpočtu lze ji úspěšně uplatnit při dobývání zásob v ochranných pilířích především u těžních překopů s kolejovou dopravou. Při sestavování této metody se vycházelo ze známého funkčního vztahu a to, že pokles povrchu při podrubání je přímo úměrný násobku mocnosti dobývané sloje a součinitele dobývací metody jak je uvedeno a obr. 3. Předpokládá se, že tento vztah také přijatelně platí i při nadrubání důlních děl. Vzhledem k tomu, že se bude jednat o podrubání a nadrubání ze vzdálenosti do 100 až 150m bude se přitom významně na poklesu a zdvihu projevovat vzájemná poloha porubu a důlního díla. Tuto okolnost zohledňuje součinitel svislé složky pohybu nebo-li poklesu a zdvihu. Jeho průběh je znázorněn na obr. 4. Na jeho průběh mají především vliv okraje porubu a to oblast nově vznikajícího pilíře v místě těžní chodby a také oblast dobývaného pilíře u výdušné chodby. Pozorováním bylo dále prokázáno, že na výslednou hodnotu poklesu a zdvihu má vliv také pevnost horninových vrstev, které se nacházejí mezi porubem a podrubávaným nebo nadrubávaým důlním dílem. Může se to projevit především při prvním ovlivněn, kdy se naměří nižší hodnoty poklesu nebo zdvihu a druhým ovlivněním, kdy dojde k tzv. aktivaci stařin a naměříme zvýšené hodnoty. To je pak v uváděném funkčním vztahu vyjádřeno součinitelem pořadí ovlivnění. Statisticko-empirická metoda se sestavovala tak, že do uváděného funkčního vztahu na obr. 3 se dosazovaly naměřené hodnoty jednotlivých činitelů ze sledovaných případů podrubání a nadrubání důlních děl asi ze 40ti ověřovacích provozů a vypočítala se hodnota součinitele svislé složky pohybu (poklesu a zdvihu). Ta se pak dle polohy podrubávaného nebo nadrubávaného důlního díla vynášela do okolí porubu v obr. 4. Z jednotlivých takto vynesených případů se potom vytvářely izolinie tohoto součinitele.
Postup výpočtu poklesu nebo zdvihu důlního díla
Za důlní dílo se v daném případě považuje především překop nebo chodba. Při výpočtu se postupuje dle funkčního vztahu uvedeného na obr. 3. Pro rychlý výpočet lze použít nomogramu na tomto obrázku. Jednotliví činitelé z funkčního vztahu jsou dále upřesněni následovně.
s – svislá složka pohybu (poklesu a zdvihu) důlního díla/cm/. Jedná se o 90 až 95% výsledné hodnoty poklesu nebo zdvihu po doznění vlivu dobývání. Dojde k tomu po nadrubání nebo podrubání překopu případně chodby, kdy se porub půdorysně vzdálí od sledovaného místa 200m anebo, když je porub v blízkosti důlního díla ukončen a od jeho ukončení uplynou tři měsíce. Jedná se o skutečnou hodnotu poklesu nebo zdvihu horského masivu, která je měřena na svornících ukotvených v boku překopu nebo chodby. Je to místo přibližně uprostřed výšky vyztuženého důlního díla, kde hodnota poklesu nebo zdvihu není ovlivněna rozvolněním hornin ve stropu nebo v počvě (bubřením). Výškové měření na svornících v boku důlního díla vyžaduje upravenou měřickou lať. Přitom výsledný pokles nebo zdvih je aritmetický průměr měření na pravém a levém boku. V případě, že by se měřilo na bodech ukotvených v počvě, pak je nutno toto měření upravit o hodnotu konvergence spodní části profilu důlního díla. Ta se změří mezi bodem v počvě a kolmo na spojnici bodů ukotvených v bocích. Obdobně je třeba postupovat při výškovém měření a bodech ukotvených ve stropu. Když nemáme v bocích v hornině ukotveny svorníky, je možné je nahradit značkami a výztuži. V tomto případě ale může docházet v průběhu ovlivnění dobýváním ke změně polohy výztuže ve vyraženém profilu, jak je to zřejmé z obr. 1, ale chyba je proti měření na stopu nebo počvě podstatně menší, jak dokazuje měření na obr. 2.
m – mocnost dobývané sloje/cm/. Je to celková dobývaná mocnost včetně dobývaných proplástků.
a – součinitel dobývací metody. Jedná se o bezrozměrný součinitel, při dobývání a zával se pohybuje od 0,9 do 0,95, při dobývání s foukanou základkou 0,5.
b – součinitel pořadí ovlivnění dobýváním. Bezrozměrný součinitel, který se stanoví dle toho, jaké horninové vrstvy převládají mezi podrubávajícím nebo nadrubávajícím porubem a důlním dílem. Jeho hodnotu je třeba stanovit odborným odhadem dle dále uváděného postupu. Měřením bylo totiž zjištěno, že pokud jsou mezi porubem a důlním dílem pevné horninové vrstvy dosahuje při prvním podrubání nebo nadrubání pokles a zdvih nižších hodnot a to čím jsou horninové vrstvy pevnější, tím jsou hodnoty poklesu a zdvihu nižší. Při druhém podrubání a nadrubání (ze sousední níže položené sloje) naopak dojde k zvýšeným hodnotám, nebo-li k tzv. aktivaci stařin. Na základě výsledků pozorování byla sestavena následující tabulka.
převládající horninové vrstvy mezi důlním dílem a porubem v % | ovlivnění dobýváním | |||
první | druhé | třetí | ||
pískovce | 60 až 80 | 0,7-0,8 | 1,2-1,3 | 1,0 |
- ,, - | 80 až 100 | 0,6-0,7 | 1,3-1,4 | 1,0 |
prachovce | 60 až 80 | 0,8-0,9 | 1,1-1,2 | 1,0 |
- ,, - | 80 až 100 | 0,7-0,8 | 1,2-1,3 | 1,0 |
jílovce | 60 až 80 | 0,9-1,0 | 1,0-1,1 | 1,0 |
- ,, - | 80 až 100 | 1,0 | 1,0 | 1,0 |
Při posuzování horninových vrstev je třeba přihlédnout také k jejich vrstevnatosti, tektonickému porušení nebo také k zvodnění.
so – součinitel svislé složky pohybu nebo-li poklesu a zdvihu. Jedná se o bezrozměrný součinitel, jeho průběh je vyznačen na obr. 4. Způsob jeho výpočtu a vyznačení byl již objasněn v předcházející stati. Obr. 4 schematicky znázorňuje podélný svislý řez směrně postupujícím porubem ve směru úklonu vrstev kolmo na postup porubu. Důlní díla (překopy a chodby) zde mohou být vyražena v nadloží nebo podloží porubu a to buď ve směru vrstev nebo kolmo a také diagonálně na této směr. Přitom mohou měnit polohu výškově vzhledem k rovině dobývané sloje. Takže pro určité úseky staničení důlního díla bude třeba samostatně stanovit hodnotu součinitele poklesu nebo zdvihu. Přitom poloha důlního díla na obr 4 je vztažena k rovině dobývané sloje. Z výsledků pozorování lze totiž prokázat, že vlivy dobývání při ležmém uložení slojí se šíří především kolmo na rovinu dobývané sloje (na vrstevnatost). Polohu důlního díla je třeba vztahovat k okraji pilíře a to buď nově vznikajícího za porubem (u těžní chodby) a nebo dobývaného porubem u stařin (u výdušné chodby) a to podle toho ke kterému pilíři je důlní dílo blíže. Graf a obr. 4 platí pro poruby délky 80 až 150m. přičemž je třeba střední část porubu (mezi +40m až –40m) buď vypouštět nebo prodlužovat. Schéma znázorňuje porub, kdy na jedné straně je pilíř a na druhé stařiny. V případě, že je dobýván první porub v dané oblasti, bude průběh izolinií poklesu nebo zdvihu stejný na obou stranách jako v okolí těžní chodby, pouze pro střední část porubu bude třeba izolinie upravit-interpolovat. Obdobně by tomu bylo v případě, když bude dobýván ponechaný pilíř, kdy na obou stranách bude stejný průběh jako v okolí výdušné chodby. Průběh izolinií kolem těžní chodby (vznikající-ponechaný pilíř) lze také uplatnit v předpolí zastaveného porubu.
Na průběh součinitele poklesu a zdvihu bude mít také vliv typ nadloží, případně částečně typ podloží dobývané sloje. Je řada metod pro jeho stanovení. Z hlediska vlivu dobývání na důlní díla se jeví jako nejvýhodnější zařazení do tří typů a to:
- předčasně zavalující (bořivé)
- pravidelně zavalující (snadno)
- opožděně zavalující (pevné)
V současné době se v OKR vyskytují pouze dva typy nadloží pravidelně zavalující a opožděně zavalující. Závažným nedostatkem současně používané metodiky ale je, že nedokáže typ nadloží jednoznačně určit a to proto, že pro ohodnocení se bere v úvahu pouze oblast zavalování nadloží, která sahá asi do 10ti násobku efektivní dobývané mocnosti sloje. Za efektivní dobývanou mocnost sloje, jak známo, se považuje násobek mocnosti dobývané sloje a bezrozměrného koeficientu likvidace závalu, který při dobývání a řízený zával dosahuje 1,0 a při foukané základce 0,5. Při 10ti násobku této mocnosti se stává, že nadloží, které bylo původě označeno jako pravidelně zavalující se později projeví jako opožděně zavalující/5/. Důvodem je , že se nebere v úvahu ještě také pásmo zalamování a rozvrstvování, které je nad pásmem zavalování a sahá do nadloží do vzdálenosti asi 50ti násobku efektivní dobývané mocnosti sloje. Pro označení nadloží jako opožděně zavalující je totiž rozhodující přítomnost pevné celistvé horninové vrstvy o větší mocnosti, jak bylo prokázáno rozborem v literatuře/5/. Tato vrstva je jakousi vůdčí a rozhodující složkou, která určuje typ nebo-li charakter tohoto nadloží. V bezprostředním nadloží dobývané sloje to může byt 5m mocná vrstva a více. Může to být také souvrství dvou pevných vrstev jako např. pískovce a prachovce. V případě, že se uvedená vrstva nachází v blízkém nebo vyšším nadloží pak její mocnost musí být rovna nebo vyšší jak mocnost mezivrství mezi touto vrstvou a dobývanou slojí. Při podrubávání této vrstvy dochází k jejímu porušování ve velkých blocích. To způsobuje v porubu opožďování závalu případně se objevují projevy tzv. periodických tlaků a nebo také dochází k důlním otřesům. Ostatní nadloží složená ze střídajících se vrstev jílovců a méně mocných vrstev prachovců a pískovců do výše 50ti násobku efektivní dobývané mocnosti sloje lze označit za pravidelně zavalující.
V případě, že je dobýván porub s opožděně zavalujícím (pevným) nadložím nebo podložím, dojde v průběhu dobývání k porušení tohoto nadloží do výšky 50ti násobku a u podloží k 10ti až 15ti násobku efektivní mocnosti dobývané sloje. Při následujícím dobývání (např. níže položené sloje) lze již takto porušené oblasti již považovat za pravidelně zavalující.
Typ podloží nemá na hodnotu součinitele poklesu a zdvihu mimořádný vliv a to proto, že převládá vliv typu nadloží. Napěťo-deformační proces se totiž při dobývání odehrává především v nadloží dobývané sloje a ten se pak
přenáší do podložních vrstev. Dokazuje to průběh měření konvergence, kdy největší hodnoty při nadrubání lze zaznamenat v předpolí porubu v oblasti nepřímého nadrubání, po přímém nadrubání dojde už jen k asi 15% celkové hodnoty konvergence/3/. Také hodnota zdvihu je v porovnání s hodnotou poklesu, jak je zřejmé z obr. 4 čtyřikrát menší.
Průběh součinitele poklesu a zdvihu na obr. 4 bylo možno sestavit pouze pro nadloží pravidelně zavalující, pro které bylo dostatečné množství dat. U nadloží opožděně zavalujícího lze předpokládat větší dosah poklesu a zdvihu do předpolí porubu, menší hodnoty poklesu a zdvihu v oblasti přímého podrubání a nadrubání a rozložení poklesu a zdvihu na širší oblast. Pro nadloží pravidelně zavalující jsou dále uváděny dva příklady výpočtu poklesu podrubávaného překopu.
První příklad podrubání je vyznačen na nomogramu – obr. 3. Jedná se o podrubání směrně vyraženého překopu ze sloje o mocnosti 130cm dobývané na řízený zával (a = 0,95) s horninami mezi slojí a překopem kde převládají z 80 až 100% vrstvy prachovců (b = 0,8) ve vzdálenosti od výdušné chodby (v rovině sloje) – 40m a ze vzdálenosti podrubání 80m (kolmo na rovinu sloje) (so = 0,6). Pokles překopu by pak dosahoval 60cm.
Jako druhý příklad je opět podrubání směrně vyraženého překopu ze sloje o mocnosti 200cm porubem s dobýváním na řízený zával (a = 0,95) s převládajícími vrstvami prachovců z 80 až 100% mezi porubem a překopem (b = 0,8) ze vzdálenosti 35 až 40m (kolmo na rovinu sloje) a ve vzdálenosti 20m od těžní chodby (v rovině sloje) (so = 0,35). Pokles překopu se také v tomto případě bude pohybovat kolem 60cm.
Závěr
Statisticko-empirická metoda pro výpočet poklesu a zdvihu podrubaných a nadrubaných překopů a chodeb je jednoduchá metoda s dostatečnou přesností výpočtu. Porovnáním s naměřeným poklesem a zdvihem bylo prokázáno, že vypočtené hodnoty se od naměřených lišily o 30%. Dosud užívané metody pro výpočet poklesu a zdvihu, převážně matematické modely pohoří, nedosahují lepších výsledků. Jejich nevýhodou je, že z hlediska výpočtu jsou časově mnohem náročnější a především nesrovnatelně dražší. Další výhodou statisticko-empirické metody je, že ji lze dále zdokonalovat a to tím, že bude doplňována dalšími naměřenými hodnotami.
Literatura
/1/ ČIKL, J.: Předchozí a následná likvidace ohradníků překopů včetně
provozního ověření. Ochrana svážných jako základny pro přípravu sloje k
dobývání. Průběžná výzkumná zpráva, VVUÚ Ostrava-Radvanice 1980
/2/ POŽÁR, J.: Předchozí a následná likvidace ochranných pilířů překopů
včetně provozního ověření. Ochrana svážných jako základy pro přípravu
sloje k dobývání. Závěrečná výzkumná zpráva 1981, doplňující zpráva
1981, VVUÚ Ostrava-Radvanice
/3/ ČIKL, J.-POŽÁR, J.-LUCÁK, O.: Výzkum měření svislé složky pohybu a
konvergence dlouhých důlních děl. 8. mezinárodní konference Hornická
Ostrava 1993, oblastní výbor Hornické společnosti ČSVTS Ostrava
/4/ POŽÁR, J.-KLÁT, J.: Metoda orientačního výpočtu svislé složky posunutí
podrubávaných a nadrubávaných dlouhých důlních děl. 4.vědecká
konference VŠB Ostrava 1990
/5/ POŽÁR, J.-POTOMÁK, V.: K mechanizmu vzniku důlních otřesů v
uhelných dolech ČR. Uhlí, rudy, geologický průzkum, č. 1, 2012, s. 10-13